公理・定義・原理って?紛らわしい数学用語を徹底解説!【生徒からの質問】
今回は生徒から数学に関して受けた質問があったので、それについて書きたいと思います。
内容が難しいのですが、同じようなことを考えている人は複数いるようなので、今回はその質問について回答したいと思います。
質問の内容は「数学や物理の公式はゼロ定義から導かれるか?」というものです。
結論を先に書いておくと、NOです。
理由を述べる前に、まず数学の公式がどのように導かれるかを考えてみたいと思います。
このページの目次
公理と定義と原理
まず、用語の確認をします。
公理
公理とは数学体系以外では用いられない用語です。
公理は「ある数学体系を作るための、最も基本的な前提条件」です。
元々は数学者にとって「説明する必要すらない自明の真理」を公理と定めていましたが、現代の数学では必ずしも自明であるわけではありません。
また、前提条件なので、証明する必要もありません。
定義
定義は数学以外の学問体系でもよく用いられる用語ですが、定義の意味を知らない人もいると思うので説明します。
定義とは「何らかの新しい概念を導入する際の宣言」を指します。
数学を例にすると、「0を除く2つの互いに素である整数a、bがあるときに、a/bと特徴づけられる数を有理数Rと定義する」となります。
aもbも既に存在していて、割り算という演算形式がある場合に、a/bと分数で書ける数のことを有理数と呼びますよと、新たに宣言するわけです。
原理
原理は物理のような自然科学ではよく用いられる用語ですが、現代の数学ではまず使われません。
原理は「ある学術体系における、最も基礎的で体系構築時には疑ってはいけない仮定」です。
こう見ると、公理と区別がつかないかもしれません。
公理との具体的な違いは、数学と自然科学の根本的な違いについて考える必要があります。
以下の記事で詳しく説明しているので、併せて確認してみてください。
生徒からきた数学、物理の質問 物理編 そもそも科学的とは何か
数学の場合
物理も数学を使いますが、当然物理と数学は同じものではありません。
その違いを考えてみましょう。
幾何学を例に取ると、ユークリッド幾何学(中高でやる一般的な幾何学)には5つの公理があります。
- 任意の一点から他の一点に対して直線を引くこと
- 有限の直線を連続的にまっすぐ延長すること
- 任意の中心と半径で円を描くこと
- すべての直角は互いに等しいこと
- 直線が2直線と交わるとき、同じ側の内角の和が2直角より小さい場合、その2直線が限りなく延長されたとき、内角の和が2直角より小さい側で交わる。
この5つの公理を認めることによって、様々な定理(例えば三角系の内角の和は180度など)を導くことが出来るわけです。
このように、中学・高校で学ぶ数学は「明らかに成り立つ自明な前提条件」を設定し、そこから、種々の定理などを導く作業です。
たとえば、三平方の定理も教科書や問題集では証明が載っていたでしょう。
公理の妥当性
ここで疑問に思うことはないでしょうか?
それは、公理はあくまで証明されている事柄ではないため、そこから導きだされることは自明ではないのではないか、ということです。
仮にユークリッドの5つの公理が間違っていれば幾何学の公式や定理は全て間違いになることになります。
とはいえ、昔は「これほど美しい理論の前提条件である公理が間違いのはずがない」と考えられていたので、それほど公理自体が証明可能か否かは問題視されていなかったようです。
「結果は正しそうだし、公理自体が直感的に正しそうだから、まぁいいや」といった感じでしょうか。
平行線公理から発する公理の意味合いの変化
ところで、上の公理の5番目を一般に平行線公理と呼びます。
この公理は「平面上に平行線(交わらない直線)が引ける」ということを表しているのですが、他の4つと比べると明らかに説明が長いです。
昔の数学者もそれを不思議に思っていたようで、他の4つの公理から平行線公理を証明しようとしました。
結果、平行線公理を証明することは出来なかったのですが、代わりに「平行線が交わるという公理を平行線公理の代わりに使っても、新しい幾何学の体系が生まれる」ということが示されました。
ちなみに、そのような幾何学のことを、一般的に非ユークリッド幾何学といいます。
たとえば、歪んだ空間(球面など)上の数学的性質を表す際に使われるのは、非ユークリッド幾何学です。
平行線の公理と矛盾する公理を用いても違う数学体系が生まれるという事実は、「公理」は、自明に成り立っていることでも何でもないということを示しています。
平行線公理ではない違う公理を勝手に使っても、違う体系の数学が生まれるだけで、どちらの数学体系が正しいかを論じることが出来ないからです。
そのため、数学においては、原理的にはどういう公理(前提条件)を取るかはその数学体系を作る人が自由に設定できるものになってます。
ダメな例は、数学体系を作る際に用意した公理同士が矛盾している場合などでしょう。
数学体系の前提条件である公理は「現実を対象としていないもの」でも一向にかまわないわけです。
後から公理が作られる場合
上の例を見ると、数学は初めに公理を作り、その公理を使って定理や公式を導くとなってますが、歴史的には「後から公理を導入する」という例もあります。
例として有名なのは、ペアノの公理です。
このペアノの公理は自然数を公理としてまとめたもので、以下の5つを満たすものを自然数として定義しています。
- 自然数0が存在する。
- 任意の自然数aにはその後者(successor)、suc(a)が存在する(suc(a)はa+1の“意味”)。
- 0 はいかなる自然数の後者でもない(0 より前の自然数は存在しない)。
- 異なる自然数は異なる後者を持つ:a ≠ b のときsuc(a) ≠ suc(b) となる。
- 0 がある性質を満たし、aがある性質を満たせばその後者 suc(a) もその性質を満たすとき、すべての自然数はその性質を満たす。(※)
この公理が作られたのは1891年で明らかに自然数という概念が生まれたよりも後です。
これは、自然数という概念は誰でも理解できるほどに簡単なものです。
しかし、「じゃあ自然数とは何かを整数という概念を使わないで説明してみてください」というのが難しいがために、形式化が遅れたのでしょう。
(参考:ペアノの公理
※後者というのは、このページを書いた訳者の表現で、日本語では後続数などと呼ぶこともあります。)
公理から証明された定理や公式は不変の真理か
最後に、数学から得られた結果について考えたいと思います。
数学で得られた証明などが、未来で「やっぱりあの証明は間違いだった」ということはあり得るでしょうか?
答えは「そんなことはあり得ない」となります。
数学により得られた結果は永久に変わらないものです。
数学的に見れば、未来で正しくないと修正を受けることはありません。
それは数学における公理の性質でもあります。
公理は前提ですが、正しいか正しくないかの枠内で考えることが出来ないものです。
その為、前提が否定されない数学体系で得られた結果は、永久に変わらないのです。
まとめ
- 数学の定理や公式は公理とよばれる前提条件から導かれるために、ゼロから導かれるわけ ではない。
- 公理は、その公理であるべき必然性も、論理的妥当性があるわけではない。新しい数学体 系を作る際に、好き勝手に公理を設定しても、公理同士に矛盾が生じなければ一向に構わない。
- 公理から種々の定理や公式が導かれるが、公理が最初から定まっていることもあれば、後 から各種の数学体系を記述できる公理を設定することもある。
- 公理は真偽判定されるものではないから、ある公理系から生まれた数学体系や、その数学 体系から生まれた結果は永久に変わらない。
ある意味では、数学者一人一人が好き勝手な公理を設定して学体系を作ることも可能なのですが、数学者も人間なので、あまり現実に即していない公理を使うことは無いようです。
また、公理は後に設定されることもあります。
じゃあ物理の場合はどうなの?ということを次回に書きたいと思います。
関連
生徒からきた数学、物理の質問 物理編 そもそも科学的とは何か
生徒からきた数学、物理の質問 物理編 理論の構築と変更
投稿者プロフィール
-
中高一貫校生の定期テスト対策から大学受験・内部進学までをトータルサポートする個別指導塾。
中高一貫校用教材に対応することで各中高一貫校の定期テストの点数に直結した指導を行います。
低料金で長時間指導が受けられるため、家で勉強できない中高一貫校生でも塾の指導時間内で成績を上げることが可能です。
英語、数学をメインに指導を行っています。
最新の投稿
学校紹介2024年12月3日【東京都市大学付属中学・高校の保護者の方必見】定期テストの特徴や進学実績を解説 学校紹介2024年12月2日【芝中学・高校の保護者の方必見】定期テストの特徴や進学実績を解説 学校紹介2024年11月30日【横浜共立学園中学・高校の保護者の方必見】定期テストの傾向や進学実績を解説 コラム2024年11月29日【中高一貫】新中1が春期講習に行く2つの理由|難度の高い授業に備えよう